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Coupled length scales in eroding landscapes
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We report results from an empirical study of the anisotropic structure of eroding landscapes. By constructing
a novel correlation function, we show quantitatively that small-scale channel-like features of landscapes are
coupled to the large-scale structure of drainage basins. We show additionally that this two-scale interaction is
scale-dependent. The latter observation suggests that a commonly applied effective equation for erosive trans-
port may itself depend on scale.
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Landscapes erode in part due to the shearing stresses im-

posed by the downhill transport of water, sediment, and other R(f,¢;|-c)=U dx w(x—r,¢;Lo)h(x)|. (4)
material[1]. Whereas the effects of erosion appear nearly xrl=tel2

obvious to the eye, they are notoriously hard to quantify. Fokye then define the locahannelization vectoe(r) from the
example, the functional form of many river-network scaling phase of ther-periodic component oR(r, #), i.e.,

laws [2] may be obtained from simple graphical construc-

tions [3,4] that have no obvious relation to real surfaces, 27 24

eroded or not. Moreover, the appropriate partial differentiac()=[—1m(2),R&2)], Z= jo e “"R(r,¢)d¢. (5
equations for dynamic modeling are a source of much con-

troversy [5-21]. Here we report results from analyses of when topographic height-height correlationg|h(x)
eroded topography that explicitly quantify a unique aspect of-h(0)|?) are elliptically anisotropicc should be perpen-
landscape erosion: a coupling between small-scale channelicular to the dominant local wave vector with magnitude
like features and the large-scale structure of drainage basing/) . In other words, when, is of the order of the width

A detailed study of this two-scale interaction reveals a richsf channels,= ¢ points in the direction in which they flow
hierarchy of scale dependencies in erosive processes. W}84) and|c| is proportional to the channel depth. The vector
provide evidence that these same scale dependencies are ifjq c(r) varies over all length scales greater than

plicitly present in a commonly applied phenomenological ¢ complete our description, we define the coarse-grained
theory of erosive transpofb—16|. slope

We probe the detailed anisotropic correlations of a land-
scapeh(r), whereh is elevation and is position. Our analy-
sis is inspired by recent theoretical res|lt9,2q that point
out the role of anisotropy in erosion and by recent empirical
analyses of other pattern forming systef2,23. We first  where the normalization faCtC@_lzflxlsLS/ZdX g(x;Ly).

form the function We calculate the angular differené® betweenc ands and

S(r;Ly)=G~* dx g(x—r;Ls)-Vh(x), (6)
[x—r|<Lg2

W(x, ;L) =€ e*g(x: L) 1) study the averaged quantity
] 1 =¢C 1=Cc/"
2
The functionw is built from a modulated plane wave. The (co@ 59>:<< C'S) > )
plane wave’s angular orientatiop and wavelength\, de- cllsl) |

termine the wave vector
where ¢ and s are measured at length scaleg and L,

2 _ respectively, and the angle brackets indicate spatial averag-
kg=~—(cos¢,sing), 0<d<2m, (2)  ing. Equation(7) should be interpreted as the average corre-
0 lation between a scale-dependent erosive respgisg and

and the plane wave is modulated by a Gaussian tgpéth @ scale-dependent strex4 ;) that induces it.

standard deviatioh ./4: To see how these correlations manifest themselves in real
, topography, we have studied the United States Geological
g(x;Leo) =L, e 8IX%Lg. (3)  Survey(USGS 1-degree digital elevation map that ranges

from 38°—39° north latitude and 120°—-121° west longitude,
We correlatew with the local topography over a region of a rectangular area whose dimensions are roughly 100 km on
size L. by computing a side, with a resolution of approximately 90 m. This area,
entirely contained within California, ranges from the western
flank of the Sierra Nevada mountains to the eastern edge of
*Present address: Physics Department, Boston University. Ele¢he Central Valley. A wide range of erosive features exist,

tronic address: kechan@buphy.bu.edu including those of glacial, fluvial, and alluvial origin.
fAuthor to whom correspondence should be addressed. Electronic Figure Xa) displays{co€ &¢) as a function ofLg/L.,
address: dan@segovia.mit.edu; URL:http://segovia.mit.edu/ averaged over the entire mdplere and elsewhere, we study
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We next provide empirical evidence thaf represents
0.5 the average size of the individual basins that drain into a
05 particular site on a map. Using the usual proced@ie we
& calculate the area; that drains into theth location. We
< 0.45 calculate{a;} not only on the original map but also on maps
8 coarse grained at a scdle(Coarse graining is performed by
0.4 computing the mean elevation in blocks of linear dimension
b.) The averag€a(b)) then represents the mean contribut-
0.35 (a) ing area for the coarse-grained map, and a characteristic

length scale may be obtained from its square root. Because
L/L bothb andL. are averaging length scales, we may compare
(a(b))*2 to L*(L.) for b=L,. Figure 1b) shows that the
quantitative agreement is surprisingly good.

§ 16 Another view of the two-scale interaction is shown in Fig.
14 1(c), a histogram ofé6, for the caseLs=10 km andL,
,fw =1 km, i.e., the point that gives the maximum in Figa)l
12 One sees that the maximum probability is f6§6=0. In
S 10 other words, the nonlocal coupling of the scalesand L.
a results in a tendency, on average, for the channelization vec-
"@ 8 tor ¢ and the slope vectos to be parallel, but only when
K Ls>L.. Note that isotropic random topography would yield

a flat histogram for any choice dfg and L.. Thus, the
results of Fig. 1 may have some practical use in the identi-
fication of the effects of fluvial erosion in environments,

© such as Mar$25], where the origin of channel-like features
5.0.07 is unclear.
§ We may provide a more detailed view of the two-scale
=3 interaction by explicitly incorporating the drainage aeem
£0.06 our correlations. We include theath moment ofa in our
E measure of the locally averaged slope by defining
N
£ 0.05
2 Sn(r;Ly =G dx g(x—r;Lga™(x)- Vh(x).
[x—r|<Lg?2
8
0'040 20 40 60 80 ®
3 (degrees) We then compute the scale-dependent average
FIG. 1. (8 The mean squared cosine of the angular separation ~ 2
60 between the slope vecterand the channelization vectoras a _ <|C Sl ) (9)

function of the ratio of the respective scalés,andL., at which m_(|c|2|~sm|2> '

they are calculated. Hete.=1.0 km and the maximum correlation

occurs atL}=10L.. Curves computed for different values bf wheres,, andc are measured at scaleg and L., respec-
are qualitatively similar, but the maximum occurs for a valie  yely. The parametem controls the statistical weight given
that depends oh. . (b) Comparison betweebg (L) (circles and 5 regions with large contributing area; the higher the mo-

the square-root of the mean contributing aréa(b))* (iine), o m, the greater the weight given to slopes with large
where bothL. andb are averaging lengths signified by (c) His- contributing area

togram showing the frequency of occurrence &#f for the case Figure Za) shows how\W,, depends orlg, L., andm.

L.=1.0 k d.=L¥;i.e. th i lation if\). . .
¢ m and.s=Ls ; i.e., the maximum correlation ife) Three trends are worthy of noté) the maximumw}, of W,

the casero=0.46 km. The results should, in general, de-increases with increasing [Fig. 2@]; (i) Wy, occurs at a
pend on\,, but this dependence is beyond the scope of thevalueL? that decreases wit [Figs. 2a) and Zb)]; and(iii )
present study.Although the correlations are never large, oneW,,(L,) is insensitive td_ [Fig. 2(c)].

striking feature stands out: the maximum occurs wihen The first trend shows that, on averagés most correlated
=10L., where herd..=1.0 km. In other words, the direc- with s when the drainage area is large. In other words, the
tion in which channel-like features flow locally is most two-scale interaction is strongest for channels that drain large
strongly coupled to the direction of the topographic slopebasins. Recall additionally that(r) is a highly fluctuating
measured at anuch larger scaleWe call this large scale function of spac¢?2] (i.e., its variance is much larger than its
L% . For any choice ot ., a curve similar to that shown in mean, whereasc is not. The locations that contribute most
Fig. 1(a) is obtained, but with its maximum at a differeny. to W,, are therefore wherais large. These locations become
Thus,L? is a function ofL... increasingly localizedi.e., they are less numerous, less dis-
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wheres=|g/, s=gs, andn is another parameter. Our term
'S, corresponds precisely to the right-hand side of Bd)
with n=1, averaged over a scale,. Now assume that the
left-hand side, when averaged over a sdale may be ap-
proximated to first order by the channelization vector
(This assumption may be partially justified by noting that
deeper channels carry more sedimeit. other words, we
view's,, as a generalized force arcas an approximate flux.
For this interpretation to be corre&, andc should be de-
fined at the same scale and the maximum correlatioV,,
should occur at this scale. In Fig(e? these two conditions
are satisfied by the curw,, which reaches its maximum at
L=L.=5.7 km. Thus, when the averaging scale
=5.7 km, the “best” effective equation of formil0) with
n=1 appears to requirem=3. More generally, since Fig.
2(c) shows thatW,, is independent ok ., we may read di-
rectly from Fig. Zb) thatL=Lym™ ¢, with L;=0.9 km and
a=0.3, giving, upon inversiomm=(L/Ly) Y.

The main conclusion to be derived from Fig. 2 lies not
with these specific numbers or relations but with the overall
trend: smallm characterizes large length scales, while large
m characterizes small length scales. These observations are
consistent with the notion that a diffusion equatj@d] (cor-
responding tan=0, n=1) is a zeroth-order model of ero-
sion. Higher powers of in Eq. (10) then correspond to
higher-order corrections that may be identified with smaller-
scale features. Note, however, that our analysis provides no
indication that these higher-order corrections become pro-
gressively smaller. Indeed, the trends in Figa)2point in
much the opposite direction.

Our results do not necessarily invalidate Efj0) as an
effective transport law. Its use is often motivated by the ob-
servation that{a™s")=const for an appropriate choice of
m/n [2]. However, Ref[28] shows thafa™s")=const also
holds for random topography.e., Gaussian surfacesSince
random topography implies random Eq. (10) cannot be
valid for a random surface. Here, on the other hand, we find

FIG. 2. (a) The qurelation fUnCtiOnWm for the Casel_-c it invalid Only in ascale_|ndependent sense.
=5.7 km, form=1 (circles, m=3 (squares and m=5 (tri- In conclusion, we have presented a multiscale analysis of

angles. (b) Plot of log,yL% as a function of the moment lggm
(circles, whereL ¥ is the value ol 4 that maximize,,. The data
are compared with a straight line of sloped.3, indicating that.}
scales approximately as %2 (c) W,, as a function of._ for L,
=2.9 (circles, 4.7 (squarey and 6.6 km(triangleg for the case
m=3. A similar insensitivity of the shape and position of the

curves with respect ta is found for othem.

tributed, and stronggmasm increases. Therefore the averag-
ing scaleL ¢ over whichs,, correlates withc decreases with

from the slow variation ot compared tG,, .

These results may provide some insight into phenomenoz
logical continuum-mechanical theories of erosion. Typically,u
these formulations assume, directly or indirectly, that the

an eroding landscape that explicitly quantifies the coupling
of drainage basins to channels. This coupling has been
shown to create a two-scale interaction, which is itself scale
dependent. These results indicate that a commonly employed
effective equation for erosive transport also contains hidden
dependencies on scale. While our results indicate that the
construction of a comprehensive continuum theory for ero-
sion is a formidable challenge, they do show one way in
which landscape patterns of unknown origi?6] may be
guantitatively analyzed to determine the kind of mechanisms
That have eroded them. We hope that our methods may also
find some applicability in the analysis of other types of land-
scapes, such as those formed by fracti®|, where the
nderlying dynamics are poorly understood.

flux j of eroded material is proportiong26] to a product of We thank P. Dodds, R. Pastor-Satorras, A. Rinaldo, and
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ported in part by DOE Grant No. DE FG02-99ER 15004 and
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