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Coupled length scales in eroding landscapes
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~Received 13 November 2000; published 13 April 2001!

We report results from an empirical study of the anisotropic structure of eroding landscapes. By constructing
a novel correlation function, we show quantitatively that small-scale channel-like features of landscapes are
coupled to the large-scale structure of drainage basins. We show additionally that this two-scale interaction is
scale-dependent. The latter observation suggests that a commonly applied effective equation for erosive trans-
port may itself depend on scale.
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Landscapes erode in part due to the shearing stresse
posed by the downhill transport of water, sediment, and o
material @1#. Whereas the effects of erosion appear nea
obvious to the eye, they are notoriously hard to quantify.
example, the functional form of many river-network scali
laws @2# may be obtained from simple graphical constru
tions @3,4# that have no obvious relation to real surface
eroded or not. Moreover, the appropriate partial differen
equations for dynamic modeling are a source of much c
troversy @5–21#. Here we report results from analyses
eroded topography that explicitly quantify a unique aspec
landscape erosion: a coupling between small-scale chan
like features and the large-scale structure of drainage ba
A detailed study of this two-scale interaction reveals a r
hierarchy of scale dependencies in erosive processes.
provide evidence that these same scale dependencies ar
plicitly present in a commonly applied phenomenologic
theory of erosive transport@5–16#.

We probe the detailed anisotropic correlations of a la
scapeh(r ), whereh is elevation andr is position. Our analy-
sis is inspired by recent theoretical results@19,20# that point
out the role of anisotropy in erosion and by recent empiri
analyses of other pattern forming systems@22,23#. We first
form the function

w~x,f;Lc!5eikf•xg~x;Lc!. ~1!

The functionw is built from a modulated plane wave. Th
plane wave’s angular orientationf and wavelengthl0 de-
termine the wave vector

kf5
2p

l0
~cosf,sinf!, 0<f,2p, ~2!

and the plane wave is modulated by a Gaussian taperg with
standard deviationLc/4:

g~x;Lc!5Lc
22e28uxu2/Lc

2
. ~3!

We correlatew with the local topography over a region o
sizeLc by computing
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R~r ,f;Lc!5U E
ux2r u<Lc /2

dx w~x2r ,f;Lc!h~x!U. ~4!

We then define the localchannelization vectorc(r ) from the
phase of thep-periodic component ofR(r ,f), i.e.,

c~r !5@2Im~Z!,Re~Z!#, Z5E
0

2p

e22f iR~r ,f!df. ~5!

When topographic height-height correlationŝuh(x)
2h(0)u2& are elliptically anisotropic,c should be perpen-
dicular to the dominant local wave vector with magnitu
2p/l0. In other words, whenl0 is of the order of the width
of channels,6c points in the direction in which they flow
@24#, anducu is proportional to the channel depth. The vect
field c(r ) varies over all length scales greater thanLc .

To complete our description, we define the coarse-grai
slope

s~r ;Ls!5G21E
ux2r u<Ls/2

dx g~x2r ;Ls!•“h~x!, ~6!

where the normalization factorG215* uxu<Ls/2
dx g(x;Ls).

We calculate the angular differencedu betweenc ands and
study the averaged quantity

^cos2 du&5 K S c•s

ucuusu D
2L , ~7!

where c and s are measured at length scalesLc and Ls ,
respectively, and the angle brackets indicate spatial ave
ing. Equation~7! should be interpreted as the average cor
lation between a scale-dependent erosive responsec(Lc) and
a scale-dependent stresss(Ls) that induces it.

To see how these correlations manifest themselves in
topography, we have studied the United States Geolog
Survey ~USGS! 1-degree digital elevation map that rang
from 38° –39° north latitude and 120° –121° west longitud
a rectangular area whose dimensions are roughly 100 km
a side, with a resolution of approximately 90 m. This are
entirely contained within California, ranges from the weste
flank of the Sierra Nevada mountains to the eastern edg
the Central Valley. A wide range of erosive features ex
including those of glacial, fluvial, and alluvial origin.

Figure 1~a! displays ^cos2 du& as a function ofLs /Lc ,
averaged over the entire map.~Here and elsewhere, we stud
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the casel050.46 km. The results should, in general, d
pend onl0, but this dependence is beyond the scope of
present study.! Although the correlations are never large, o
striking feature stands out: the maximum occurs whenLs
.10Lc , where hereLc51.0 km. In other words, the direc
tion in which channel-like features flow locally is mo
strongly coupled to the direction of the topographic slo
measured at amuch larger scale. We call this large scale
Ls* . For any choice ofLc , a curve similar to that shown in
Fig. 1~a! is obtained, but with its maximum at a differentLs .
Thus,Ls* is a function ofLc .

FIG. 1. ~a! The mean squared cosine of the angular separa
du between the slope vectors and the channelization vectorc as a
function of the ratio of the respective scales,Ls andLc , at which
they are calculated. HereLc51.0 km and the maximum correlatio
occurs atLs* .10Lc . Curves computed for different values ofLc

are qualitatively similar, but the maximum occurs for a valueLs*
that depends onLc . ~b! Comparison betweenLs* (Lc) ~circles! and
the square-root of the mean contributing area,^a(b)&1/2 ~line!,
where bothLc andb are averaging lengths signified byx. ~c! His-
togram showing the frequency of occurrence ofdu for the case
Lc51.0 km andLs5Ls* ; i.e., the maximum correlation in~a!.
05510
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We next provide empirical evidence thatLs* represents
the average size of the individual basins that drain into
particular site on a map. Using the usual procedure@2#, we
calculate the areaai that drains into thei th location. We
calculate$ai% not only on the original map but also on map
coarse grained at a scaleb. ~Coarse graining is performed b
computing the mean elevation in blocks of linear dimens
b.! The averagêa(b)& then represents the mean contribu
ing area for the coarse-grained map, and a character
length scale may be obtained from its square root. Beca
both b andLc are averaging length scales, we may comp
^a(b)&1/2 to Ls* (Lc) for b5Lc . Figure 1~b! shows that the
quantitative agreement is surprisingly good.

Another view of the two-scale interaction is shown in Fi
1~c!, a histogram ofdu, for the caseLs510 km andLc
51 km, i.e., the point that gives the maximum in Fig. 1~a!.
One sees that the maximum probability is fordu.0. In
other words, the nonlocal coupling of the scalesLs and Lc
results in a tendency, on average, for the channelization
tor c and the slope vectors to be parallel, but only when
Ls@Lc . Note that isotropic random topography would yie
a flat histogram for any choice ofLs and Lc . Thus, the
results of Fig. 1 may have some practical use in the ide
fication of the effects of fluvial erosion in environment
such as Mars@25#, where the origin of channel-like feature
is unclear.

We may provide a more detailed view of the two-sca
interaction by explicitly incorporating the drainage areaa in
our correlations. We include themth moment ofa in our
measure of the locally averaged slope by defining

s̃m~r ;Ls!5G21E
ux2r u<Ls/2

dx g~x2r ;Ls!a
m~x!•“h~x!.

~8!

We then compute the scale-dependent average

Wm5
^uc• s̃mu2&

^ucu2us̃mu2&
, ~9!

where s̃m and c are measured at scalesLs and Lc , respec-
tively. The parameterm controls the statistical weight give
to regions with large contributing area; the higher the m
ment m, the greater the weight given to slopes with lar
contributing area.

Figure 2~a! shows howWm depends onLs , Lc , andm.
Three trends are worthy of note:~i! the maximumWm* of Wm

increases with increasingm @Fig. 2~a!#; ~ii ! Wm* occurs at a
valueLs* that decreases withm @Figs. 2~a! and 2~b!#; and~iii !
Wm(Ls) is insensitive toLc @Fig. 2~c!#.

The first trend shows that, on average,c is most correlated
with s when the drainage area is large. In other words,
two-scale interaction is strongest for channels that drain la
basins. Recall additionally thata(r ) is a highly fluctuating
function of space@2# ~i.e., its variance is much larger than i
mean!, whereasc is not. The locations that contribute mo
to Wm are therefore wherea is large. These locations becom
increasingly localized~i.e., they are less numerous, less d
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tributed, and stronger! asm increases. Therefore the avera
ing scaleLs over whichs̃m correlates withc decreases with
m, thus explaining the second trend. The third trend res
from the slow variation ofc compared tos̃m .

These results may provide some insight into phenome
logical continuum-mechanical theories of erosion. Typica
these formulations assume, directly or indirectly, that
flux j of eroded material is proportional@26# to a product of
drainage area and slope@5–16#, i.e.,

j}amsnŝ, ~10!

FIG. 2. ~a! The correlation functionWm for the caseLc

55.7 km, for m51 ~circles!, m53 ~squares!, and m55 ~tri-
angles!. ~b! Plot of log10 Ls* as a function of the moment log10 m
~circles!, whereLs* is the value ofLs that maximizesWm . The data
are compared with a straight line of slope20.3, indicating thatLs*
scales approximately asm20.3. ~c! Wm as a function ofLs for Lc

52.9 ~circles!, 4.7 ~squares!, and 6.6 km~triangles! for the case
m53. A similar insensitivity of the shape and position of th
curves with respect toLc is found for otherm.
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wheres5usu, ŝ5s/s, andn is another parameter. Our term
s̃m corresponds precisely to the right-hand side of Eq.~10!
with n51, averaged over a scaleLs . Now assume that the
left-hand side, when averaged over a scaleLc , may be ap-
proximated to first order by the channelization vectorc.
~This assumption may be partially justified by noting th
deeper channels carry more sediment.! In other words, we
view s̃m as a generalized force andc as an approximate flux
For this interpretation to be correct,s̃m andc should be de-
fined at the same scaleL, and the maximum correlationWm

should occur at this scale. In Fig. 2~a! these two conditions
are satisfied by the curveW3, which reaches its maximum a
Ls5Lc55.7 km. Thus, when the averaging scaleL
55.7 km, the ‘‘best’’ effective equation of form~10! with
n51 appears to requirem53. More generally, since Fig
2~c! shows thatWm is independent ofLc , we may read di-
rectly from Fig. 2~b! that L.L0m2a, with L0.0.9 km and
a.0.3, giving, upon inversion,m.(L/L0)21/a.

The main conclusion to be derived from Fig. 2 lies n
with these specific numbers or relations but with the ove
trend: smallm characterizes large length scales, while lar
m characterizes small length scales. These observations
consistent with the notion that a diffusion equation@27# ~cor-
responding tom50, n51) is a zeroth-order model of ero
sion. Higher powers ofa in Eq. ~10! then correspond to
higher-order corrections that may be identified with small
scale features. Note, however, that our analysis provides
indication that these higher-order corrections become p
gressively smaller. Indeed, the trends in Fig. 2~a! point in
much the opposite direction.

Our results do not necessarily invalidate Eq.~10! as an
effective transport law. Its use is often motivated by the o
servation that̂ amsn&.const for an appropriate choice o
m/n @2#. However, Ref.@28# shows that̂ amsn&.const also
holds for random topography~i.e., Gaussian surfaces!. Since
random topography implies randomj , Eq. ~10! cannot be
valid for a random surface. Here, on the other hand, we fi
it invalid only in a scale-independent sense.

In conclusion, we have presented a multiscale analysi
an eroding landscape that explicitly quantifies the coupl
of drainage basins to channels. This coupling has b
shown to create a two-scale interaction, which is itself sc
dependent. These results indicate that a commonly emplo
effective equation for erosive transport also contains hid
dependencies on scale. While our results indicate that
construction of a comprehensive continuum theory for e
sion is a formidable challenge, they do show one way
which landscape patterns of unknown origin@25# may be
quantitatively analyzed to determine the kind of mechanis
that have eroded them. We hope that our methods may
find some applicability in the analysis of other types of lan
scapes, such as those formed by fracture@29#, where the
underlying dynamics are poorly understood.

We thank P. Dodds, R. Pastor-Satorras, A. Rinaldo,
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ported in part by DOE Grant No. DE FG02-99ER 15004 a
NSF Grant No. EAR-9706220.
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